ISSN NO: 0042-9945

Intuitionistic Fuzzy $\beta^{**}G$ irresolute Mappings with Separation Axioms

Sudha, S.M.¹ and Jayanthi, D.²

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.

¹·sudhamaths2016@gmail.com²·jayanthimathss@gmail.com

Abstract

The aim of this paper is to introduce and study the concepts of theoretical applications of intuitionistic fuzzy β^{**} generalized closed sets by defining new spaces namely,intuitionistic fuzzy β^{**} generalized $T_{1/2}$ space and intuitionistic fuzzy β^{**} pre $T_{1/2}$ space. And also we have introduced intuitionistic fuzzy β^{**} generalized irresolute mappings and investigated some of their properties.

Keywords:Intuitionistic fuzzy topology,intuitionistic fuzzy β^{**} generalized closed set, intuitionistic fuzzy β^{**} generalized $T_{1/2}$ space, intuitionistic fuzzy β^{**} pre $T_{1/2}$ space and intuitionistic fuzzy β^{**} generalized irresolute mappings.

Subject Classification Code: 03F55, 54A40.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [11] and later Atanassov [1] introduced intuitionistic fuzzy sets using the notion of fuzzy sets. Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Saranya and Jayanthi introduced intuitionistic fuzzy β generalized closed sets in 2016. Sudha and Jayanthi [6] introduced intuitionistic fuzzy β^{**} generalized closed sets. In this paper we overtly enunciate the notion of intuitionistic fuzzy β^{**} generalized $T_{1/2}$ space, intuitionistic fuzzy β^{**} generalized irresolute mappings and investigated some of their properties.

2. Preliminaries

Definition 2.1: [1] An **intuitionistic fuzzy set** (IFS) A is an object having the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$$

where the functions $\mu_A: X \to [0, 1]$ and $\nu_A: X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS(X), the set of all intuitionistic fuzzy sets in X. An intuitionistic fuzzy set A in X is simply denoted by $A = \langle x, \mu_A, \nu_A \rangle$ instead of denoting $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$.

Definition 2.2: [1]Let A and B be two IFSs of the form $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \}$ and $B = \{ \langle x, \mu_B(x), \nu_B(x) \rangle : x \in X \}$. Then,

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $A \supseteq B$,
- (c) $A^{c} = \{ \langle x, v_{A}(x), \mu_{A}(x) \rangle : x \in X \},$
- (d) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \},$
- (e) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}.$

The intuitionistic fuzzy sets $0_{\sim} = \langle x, 0, 1 \rangle$ and $1_{\sim} = \langle x, 1, 0 \rangle$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An **intuitionistic fuzzy topology** (IFT) on X is a family τ of IFSs in X satisfying the following axioms:

- (i) 0_{\sim} , $1_{\sim} \in \tau$,
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\bigcup G_i \in \tau$ for any family $\{G_i : i \in J\} \subseteq \tau$

In this case the pair (X, τ) is called the **intuitionistic fuzzy topological space** (IFTS) and any IFS in τ is known as an **intuitionistic fuzzy open set** (IFOS) in X. The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS) in X.

Definition 2.4: [8]Two IFSs A and B are said to be q-coincident (A $_q$ B) if and only if there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$.

Definition 2.5: [3] An **intuitionistic fuzzy point** (IFP), written as $p_{(\alpha, \beta)}$ is defined to be an IFS of X given by

$$p_{(\alpha, \beta)}(x) = \begin{cases} (\alpha, \beta) & \text{if } x = p, \\ (0,1) & \text{otherwise.} \end{cases}$$

An IFP $p_{(\alpha, \beta)}$ is said to belong to a set A if $\alpha \le \mu_A$ and $\beta \ge \nu_A$.

Definition 2.6: [6]An IFS A of an IFTS (X, τ) is said to be an **intuitionistic fuzzy** β^{**} **generalized closed set** $(IF\beta^{**}GCS)$ if $cl(int(cl(A))) \cap int(cl(int(A))) \subseteq U$ whenever $A \subseteq U$ and U is an IFOS in (X, τ) .

The complement A^c of an $IF\beta^{**}GCS$ A in an IFTS (X, τ) is called an **intuitionistic** fuzzy β^{**} generalized open set $(IF\beta^{**}GOS)$ in X.

The family of all IF β^{**} GOSs of an IFTS (X, τ) is denoted by IF β^{**} GO(X).

Result 2.7: [6] Every IFCS, IFRCS, IFSCS, IFPCS, IF β CS, IF α CS, IFGCS is an IF β **GCS but the converses may not true in general.

Definition 2.8: [9]An IFTS (X, τ) is said to be an *intuitionistic fuzzyT*_{1/2} *space*if every IFGCS is an IFCS in (X, τ) .

Definition 2.9: [4]Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ) . Then f is said to be an **intuitionistic fuzzy** (IF) **continuous** mapping if $f^{-1}(B) \in IFO(X)$ for every $B \in \sigma$.

Definition 2.10:[7]A mapping $f:(X, \tau) \to (Y, \sigma)$ is called an **intuitionistic fuzzy** β^{**} **generalized continuous** (IF β^{**} G continuous) **mapping** if $f^{-1}(V)$ is an IF β^{**} GCS in (X, τ) for every IFCS V of (Y, σ) .

Definition 2.11:[5] A mapping $f: (X, \tau) \to (Y, \sigma)$ is called an **intuitionistic fuzzy generalized irresolute** (IF irresolute) **mapping** if $f^{-1}(V)$ is an IFGCS in (X, τ) for every IFGCS V of (Y, σ) .

3. Theoretical applications of intuitionistic fuzzy β^{**} generalized closed sets

In this section we have investigated some theoretical applications of intuitionistic fuzzy β^{**} generalized closed sets by defining new spaces and obtained many interesting propositions.

Definition 3.1: An IFTS (X, τ) is an *intuitionistic fuzzy* $\beta^{**}pT_{1/2}(IF\beta^{**}pT_{1/2})$ *space* if every IF $\beta^{**}GCS$ is an IFPCS in X.

Example 3.2: Let $X = \{a, b\}$ and $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ be an IFT on X, where $G_1 = \langle x, (0.5_{a}, 0.3_{b}), (0.5_{a}, 0.4_{b}) \rangle$, $G_2 = \langle x, (0.5_{a}, 0.4_{b}), (0.5_{a}, 0.3_{b}) \rangle$.

Then,

$$\begin{split} & \text{IFPC}(X) = & \{0_{\sim} \ , 1_{\sim} \ , \ \mu_a \in [0,1], \ \mu_b \in [0,1], \ \nu_a \in [0,1], \ \nu_b \in [0,1]/\ 0 \leq \ \mu_a + \nu_a \ \leq 1 \ \text{and} \ 0 \leq \ \mu_a + \nu_a \\ & \leq 1 \} \ \text{and} \end{split}$$

IF $\beta^{**}GC(X) = \{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/0 \le \mu_a + \mu_b \le 1, 0 \le \mu_a + \mu_b \le 1\}$ Therefore the space (X, τ) is an intuitionistic fuzzy $\beta^{**}pT_{1/2}$ space, as every IF $\beta^{**}GCS$ is an IFPCS in this (X, τ) .

Definition 3.3: An IFTS (X, τ) is an *intuitionistic fuzzy* $\beta^{**}gT_{1/2}(IF\beta^{**}gT_{1/2})$ *space* if every IF $\beta^{**}GCS$ is an IFGCS in X.

Example 3.4: In example 3.2, IFGC(X) = $\{0_{\sim}, 1_{\sim}, \mu_a \in [0,1], \mu_b \in [0,1], \nu_a \in [0,1], \nu_b \in [0,1]/0 \le \mu_a + \nu_a \le 1 \text{ and } 0 \le \mu_a + \nu_a \le 1\}$. The space (X, τ) is an intuitionistic fuzzy $\beta^* gT_{1/2}$ space, as every IF $\beta^* GCS$ is an IFGCS in this (X, τ) .

Remark 3.5: Not every IF β^{**} p $T_{1/2}$ space is an IF $T_{1/2}$ space. This can be seen easily from the following example.

Example 3.6: In example 3.2, (X, τ) is an IF β ** $pT_{1/2}$ space, but not an IF $T_{1/2}$ space. Since the IFS $A = \langle x, (0.6_a, 0.7_b), (0.4_a, 0.3_b) \rangle$ is an IFGCS, but not an IFCS, as $cl(A) = 1 \neq A$.

Proposition 3.7: An IFTS (X, τ) is an IF $\beta^{**}gT_{1/2}$ space if and only if IFGO $(X) = IF\beta^{**}GO(X)$.

Proof: Necessity: Let A be an IF β **GOS in (X, τ), then A^c is an IF β **GCS in (X, τ). By hypothesis, A^c is an IFGCS in (X, τ). Hence A is an IFGOS in (X, τ). Thus IFGO(X) = IF β **GO(X).

Sufficiency: Let A be an IF β^**GCS in (X, τ) . Then A^c is an IF β^**GOS in (X, τ) . By hypothesis, A^c is an IFGOS in (X, τ) . Therefore A is an IFGCS in (X, τ) . Hence (X, τ) is an IF $\beta^**gT_{1/2}$ space.

Proposition 3.8: Let X be an IF $\beta^{**}pT_{1/2}$ space. Then for an IFS A the following conditions are equivalent:

- (i) $A \in IF\beta**GO(X)$
- (ii) $A \subseteq int(cl(A))$
- (iii) There exists an IFOS G such that $G \subseteq A \subseteq int(cl(A))$

Proof: (i) \Rightarrow (ii) Let $A \in IF\beta^{**}GO(X)$. This implies A is an IFPOS in X, since X is an IF $\beta^{**}pT_{1/2}$ space. Then A^c is an IFPCS in X. Therefore $cl(int(A^c)) \subseteq A^c$. This implies A $\subseteq int(cl(A))$.

- (ii) \Rightarrow (iii) Let A \subseteq int(cl(A)). Hence int(int(A)) \subseteq A \subseteq int(cl(A)). Then there exists IFOS G in X such that $G \subseteq A \subseteq$ int(cl(A)), where G = int(A).
- (iii) \Rightarrow (i) Suppose that there exists IFOS G such that $G \subseteq A \subseteq \operatorname{int}(\operatorname{cl}(A))$. It is clear that $(\operatorname{int}(\operatorname{cl}(A)))^c \subseteq A^c$. This implies $\operatorname{cl}(\operatorname{int}(A^c)) \subseteq A^c$. That is A^c is an IFPCS in X. This implies A is an IFPOS in X. Hence $A \in \operatorname{IF}\beta^{**}GO(X)$.

Proposition 3.9: Let X be an IF β ** $gT_{1/2}$ space. If A is an IFS of X then the following properties are equivalent:

- (i) $A \in IF\beta**GO(X)$
- (ii) $U \subseteq int(cl(int(A)))$ whenever $U \subseteq A$ and U is an IFCS in X.
- (iii) There exist IFOSs G and G_1 such that $G_1 \subseteq U \subseteq int(cl(G))$.

Proof: (i) \Rightarrow (ii) Let $A \in IF\beta^{**}GO(X)$. This implies A is an IFGOS in X, since X is an IF $\beta^{**}gT_{1/2}$ space. Then A^c is an IFGCS in X. Therefore $cl(A^c) \subseteq V$ whenever $A^c \subseteq V$ and V is an IFOS in X. That is $cl(int(cl(A^c))) \subseteq cl(cl(A^c)) \subseteq cl(A^c) \subseteq V$. This implies

 $V^c \subseteq int(cl(int(A)))$ whenever $V^c \subseteq A$ and V^c is an IFCS in X. Replacing V^c by U, $U \subseteq int(cl(int(A)))$ whenever $U \subseteq A$ and U is an IFCS in X.

(ii) \Rightarrow (iii) Let $U \subseteq int(cl(int(A)))$ whenever $U \subseteq A$ and U is an IFCS in X. We have $int(U) \subseteq U \subseteq int(cl(int(A)))$. Hence there exist IFOSs G and G_1 in X such that $G_1 \subseteq U \subseteq int(cl(G))$ where G = int(A) and $G_1 = int(U)$.

(iii) \Rightarrow (i) Suppose that there exist IFOSs G and G_1 such that $G_1 \subseteq U \subseteq int(cl(G))$. Then it is clear that $(int(cl(G)))^c \subseteq U^c$. That is $(int(cl(int(A))))^c \subseteq U^c$. This implies $cl(int(cl(A^c))) \subseteq U^c$, $A^c \subseteq U^c$ and U^c is an IFOS in X. This implies $cl(A^c) \subseteq U^c$. That is A^c is an IFGCS in X. This implies A is an IFGOS in X. Hence $A \in IF\beta **GO(X)$.

Proposition 3.10: Let (X, τ) be an IF β **p $T_{1/2}$ space. Then

- (i) Any union of IF β **GCS is an IF β **GCS,
- (ii) Any intersection of IF β **GOS is an IF β **GOS.

Proof: (i) Let $\{A_i\}_{i\in I}$ be a collection of IF β **GCSs. Since (X, τ) is an IF β **pT $_{1/2}$ space, every IF β **GCS is an IFPCS. As any union of IFPCS is an IFPCS, $\underset{i\in I}{Y}$ A_i is an IFPCS. Since every IFPCS is an IF β **GCS, $\underset{i\in I}{Y}$ A_i is an IF β **GCS.

(ii)can be proved easily by taking complement in (i).

Proposition 3.11: An IFTS (X, τ) is an intuitionistic fuzzy $\beta^{**}pT_{1/2}$ space if and only if $IF\beta^{**}GO(X) = IFPO(X)$.

Proof: Necessity:Let A be an IF β **GOS in (X, τ), then A^c is an IF β **GCS in (X, τ). By hypothesis, A^c is an IFPCS in (X, τ). Hence A is an IFPOS in X. Thus IF β **GO(X) = IFPO(X).

Sufficiency: Let A be an IF β **GCS in (X, τ). Then A^c is an IF β **GOS in (X, τ). By hypothesis, A^c is an IFPOS in (X, τ) and hence A is an IFPCS (X, τ). Therefore (X, τ) is an intuitionistic fuzzy β **pT_{1/2} space.

Proposition 3.12: For any IFS A in (X, τ) where X is an IF β ** $pT_{1/2}$ space, $A \in IF\beta$ **GO(X) if and only if for every IFP $p_{(\alpha, \beta)} \in A$, there exists an IF β **GOS B in X such that $p_{(\alpha, \beta)} \in B \subseteq A$.

Proof: Necessity: If $A \in IF\beta**GO(X)$, then we can take B = A so that $p_{(\alpha, \beta)} \in B \subseteq A$ for every IFP $p_{(\alpha, \beta)} \in A$.

Sufficiency: Let A be anIFS in (X, τ) and assume that there exists $B \in IF\beta^{**}GO(X)$ such that $p_{(\alpha, \beta)} \in B \subseteq A$. Since X is an $IF\beta^{**}pT_{1/2}$ space, B is an IFPOS [6]. Then $A = \underset{p_{(\alpha, \beta)} \in A}{\underbrace{Y}} \left\{ p_{(\alpha, \beta)} \right\}$

$$\subseteq \underset{p_{(\alpha,\beta)}\in A}{\mathbf{Y}}$$
 $\mathbf{B}\subseteq \mathbf{A}$. Therefore $\mathbf{A}=\underset{p_{(\alpha,\beta)}\in A}{\mathbf{Y}}$, which is an IFPOS. Hence \mathbf{A} is an IF β **GOS in \mathbf{X} .

4. Intuitionistic fuzzy β^{**} generalized irresolute mappings

In this section we have introduced intuitionistic fuzzy β^{**} generalized irresolute mappings and studied some of their properties.

Definition 4.1:A mapping $f:(X, \tau) \to (Y, \sigma)$ is an **intuitionistic fuzzy** β^{**} **generalized** (IF $\beta^{**}G$) **irresolutemapping**if $f^{-1}(V)$ is an IF $\beta^{**}GCS$ in (X, τ) for every IF $\beta^{**}GCS$ V of (Y, σ) .

Example 4.2:Let $X = \{a, b\}$ and $Y = \{u, v\}$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$ are IFTs on X and Y respectively, where $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle x, (0.8_a, 0.6_b), (0.2_a, 0.4_b) \rangle$ and $G_3 = \langle y, (0.3_u, 0.4_v), (0.5_u, 0.6_v) \rangle$. Define a mapping $f : (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IF $\beta^{**}G$ irresolute mapping.

Proposition 4.3:Let $f:(X, \tau) \to (Y, \sigma)$ be an $IF\beta^{**}G$ irresolute mapping, then f is an $IF\beta^{**}G$ continuous mapping but not conversely.

Proof:Let V be any IFCS in Y. Then V is an IF β^{**} GCS and by hypothesis $f^{-1}(V)$ is an IF β^{**} GCS in X. Hence f is an IF β^{**} G continuous mapping.

Example 4.4:Let $X = \{a, b\}$ and $Y = \{u, v\}$ and $G_1 = \langle x, (0.6_a, 0.8_b), (0.2_a, 0.1_b) \rangle$, $G_2 = \langle x, (0.3_a, 0.3_b), (0.2_a, 0.2_b) \rangle$ and $G_3 = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$. Then $\tau = \{0_{\sim}, G_1, G_2, 1_{\sim}\}$ and

 $\sigma = \{0_{\sim}, G_3, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping $f: (X, \tau) \to (Y, \sigma)$ by f(a) = u and f(b) = v.

Then f is an IF $\beta^{**}G$ continuous mapping but not an IF $\beta^{**}G$ irresolute mapping, since the IFS $A = \langle y, (0.5_u, 0.3_v), (0.2_u, 0.1_v) \rangle$ is an IF $\beta^{**}GCS$ in Y and its inverse $f^{-1}(A)$ is not an IF $\beta^{**}GCS$ in X, as $f^{-1}(A) = \langle x, (0.5_a, 0.3_b), (0.2_a, 0.1_b) \rangle \subseteq G_1$, but $int(cl(int(f^{-1}(A)))) \cap cl(int(cl(f^{-1}(A)))) = 1 \text{ and } G_1$.

Proposition 4.5: A mapping $f:(X, \tau) \to (Y, \sigma)$ is an $IF\beta^{**}G$ irresolute mapping if and only if the inverse image of each $IF\beta^{**}GOS$ in Y is an $IF\beta^{**}GOS$ in X.

Proof: straightforward.

Proposition 4.6: The composition of two IF $\beta^{**}G$ irresolute mappings an IF $\beta^{**}G$ irresolute mapping.

Proof:Let $f:(X,\tau)\to (Y,\sigma)$ and $g:(Y,\sigma)\to (Z,\delta)$ be any two IF $\beta^{**}G$ irresolute mappings. Let V be an IF $\beta^{**}GCS$ in Z. Then $g^{-1}(V)$ is an IF $\beta^{**}GCS$ in Y, by hypothesis. Since f is an IF $\beta^{**}G$ irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IF $\beta^{**}GCS$ in X. Hence g o f is an IF $\beta^{**}G$ irresolute mapping.

Proposition 4.7:Let $f:(X, \tau) \to (Y, \sigma)$ be an $IF\beta^{**}G$ irresolute mapping and $g:(Y, \sigma) \to (Z, \delta)$ is an $IF\beta^{**}G$ continuous mapping, then $g \circ f:(X, \tau) \to (Z, \delta)$ is an $IF\beta^{**}G$ continuous mapping.

Proof:Let V be an IFCS in Z. Then $g^{-1}(V)$ is an IF $\beta^{**}GCS$ in Y. Since f is an IF $\beta^{**}G$ irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IF $\beta^{**}GCS$ in X. Hence g o f is an IF $\beta^{**}G$ continuous mapping.

Proposition 4.8: Let $f:(X, \tau) \to (Y, \sigma)$ be a mapping from an IFTS X into an IFTS Y. Then the following conditions are equivalent if X and Y are IF β **p $T_{1/2}$ spaces:

- (i) f is an IF β **G irresolute mapping
- (ii) $f^{-1}(B)$ is an IF β **GOS in X for each IF β **GOS B in Y
- (iii) $f^{-1}(pint(B)) \subseteq pint(f^{-1}(B))$ for each IFS B of Y
- (iv) $pcl((f^1(B)) \subseteq f^1((pcl(B)))$ for each IFS B of Y.

ISSN NO: 0042-9945

Proof: (i) \Leftrightarrow (ii) is obvious, since $f^{-1}(A^{c}) = (f^{-1}(A))^{c}$.

(ii) \Rightarrow (iii) Let B be any IFS in Y and pint(B) \subseteq B. Also $f^{-1}(pint(B)) \subseteq f^{-1}(B)$. Since pint(B) is an IFPOS in Y, it is an IF β **GOS in Y. Therefore $f^{-1}(pint(B))$ is an IF β **GOS in X, by hypothesis. Since X is an IF β ** $pT_{1/2}$ space, $f^{-1}(pint(B))$ is an IFPOS in X. Hence $f^{-1}(pint(B)) = pint(f^{-1}(pint(B))) \subset pint(f^{-1}(B))$.

(iii) ⇒ (iv) is obvious by taking complement in (iii).

(iv) \Rightarrow (i) Let B be an IF β **GCS in Y. Since Y is an IF β **pT_{1/2} space, B is an IFPCS in Y and pcl(B)=B. Hence $f^1(B) = f^1(pcl(B)) \supseteq pcl(f^1(B))$, by hypothesis. But $f^1(B) \subseteq pcl(f^1(B))$. Therefore pcl($f^1(B)$) = $f^1(B)$. This implies $f^1(B)$ is an IFPCS and hence it is an IF β **GCS in X.Thus f is an IF β **G irresolute mapping.

Proposition 4.9: Let $f:(X, \tau) \to (Y, \sigma)$ be an IF β **G irresolute mapping. Then $f^1(B)$ $\subseteq pint(f^1(int(cl(B))))$ for every IF β **GOS B in Y, if X and Y are IF β **p $T_{1/2}$ spaces.

Proof: Let B be an IF β **GOS in Y. Then by hypothesis, $f^1(B)$ is an IF β **GOS in X. Since X is an IF β **p $T_{1/2}$ space, $f^1(B)$ is an IFPOS in X. Therefore pint($f^1(B)$) = $f^1(B)$. Since Y is an IF β **p $T_{1/2}$ space, B is an IFPOS in Y and B \subseteq int(cl(B)). Now $f^1(B)$ = pint($f^1(B)$) \subseteq pint($f^1(int(cl(B)))$.

Proposition 4.10:If $f:(X, \tau) \to (Y, \sigma)$ is an IF $\beta^{**}G$ irresolute mapping and $g:(Y, \sigma) \to (Z, \delta)$ is an IF contra continuous mapping, then $g \circ f:(X, \tau) \to (Z, \delta)$ is an IF contra $\beta^{**}G$ continuous mapping.

Proof:Let V be an IFOS in Z. Then $g^{-1}(V)$ is an IFCS in Y, since g is an IF contra continuous mapping. As every IFCS is an IF $\beta^{**}GCS$, $g^{-1}(V)$ is an IF $\beta^{**}GCS$ in Y. Since f is an IF $\beta^{**}G$ irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IF $\beta^{**}GCS$ in X. Therefore g o f is an IF contra $\beta^{**}G$ continuous mapping.

Proposition 4.11 : Let $f:(X, \tau) \to (Y, \sigma)$ is an IF $\beta^{**}G$ irresolute mapping and $g:(Y, \sigma) \to (Z, \delta)$ is an IF $\beta^{**}G$ continuous mapping, then $g \circ f:(X, \tau) \to (Z, \delta)$ is an IF almost $\beta^{**}G$ continuous mapping.

Proof:Let V be an IFRCS in Z. Since every IFRCS is an IFCS, V is an IFCS in Z. Therefore $g^{-1}(V)$ is an IF $\beta^{**}GCS$ in Y, by hypothesis. Since f is an IF $\beta^{**}G$ irresolute mapping, $f^{-1}(g^{-1}(V))$ is an IF $\beta^{**}GCS$ in X. Hence g o f is an IF almost $\beta^{**}G$ continuous mapping.

REFERENCES:

- [1] **Atanassov, K.,** "Intuitionistic fuzzy sets, Fuzzy Sets and Systems", 1986, 87-96.
- [2] **Coker, D.,** "An introduction to intuitionistic fuzzy topological space, Fuzzy Sets and Systems", 1997, 81-89.
- [3] **Coker, D.** and **Demirci, M.,** "On intuitionistic fuzzy points", Notes on intuitionistic fuzzy sets, 1995, 79-84.
- [4] **Gurcay, H., Coker, D.** and **Haydar, Es.A.,** "On fuzzy continuity in intuitionistic fuzzy topological spaces", The J. Fuzzy Mathematics, 1997, 365-378.
- [5] **Santhi, R. and Sakthivel, K.,** Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5, 2009, 73-82.
- [6] **Sudha, S.M.** and **Jayanthi, D.**, " β^{**} generalized closed sets in intuitionistic fuzzy topological spaces", Advances in Mathematics: Scientific Journal 9(2), 2020, 667-677.
- [7] **Sudha, S.M.** and **Jayanthi, D.,** "Intuitionistic fuzzy β^{**} generalized continuous functions", Malaya Journal of Matematik, 2020, 227-230.
- [8] **Thakur, S.S.,** and **Rekha Chaturvedi**, "Regular generalized closed sets in intuitionistic fuzzy topological spaces", Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria, 16, 2006, 257-272.
- [9] **Thakur, S. S., and Rekha Chaturvedi,** "Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics", 2008, 559-570.
- [10] Young Bae Jun, Jung Ok Kang and Seok-Zun Song, "Intuitionistic fuzzy irresolute and continuous mappings", Far East Journal of Mathematical Sciences, 17, 2005, 201-216.
- [11] **Zadeh, L.A.,** Fuzzy Sets, Information and control, 1965, 338-353.